Ohio State team receives $6.34 million DARPA award

As market forces drive electronic and mechanical devices to become smaller and smaller, there is a rapidly intensifying need for high-density and energy-efficient magnetic information storage. However, magnetic storage becomes increasingly volatile and less efficient as it decreases in size, creating significant barriers for high-performance computation and information processing.

Now, a team of Ohio State researchers has received a $6.34 million award from the Defense Advanced Research Projects Agency (DARPA) to develop novel magnetic materials by unlocking the power of skyrmions, nanoscale spin textures that offer promise for storage miniaturization. The team is based at the Center for Emergent Materials (CEM), a National Science Foundation (NSF)-funded Materials Research Science and Engineering Center. The three-and-a-half-year award period runs from Feb. 1, 2018, through July 31, 2021.

The Ohio State collaborators are one of a handful of successful teams to win this award in an international competition as part of DARPA’s Topological Excitations in Electronics (TEE) program. TEE endeavors to design materials with new, controllable functionalities in memory, logic, sensors and quantum information processing — all having critical implications for the nation’s economic, energy and defense security.

In magnetic memories, information (for example, a collection of bits) is stored as clusters of spins, which are either an up or a down (or put differently, a one or a zero). These spin clusters, which form the basis of magnetic memories, become less stable when reduced in size.

“As the spin clusters become smaller and smaller, the memory becomes volatile,” says Mohit Randeria, professor of physics and principal investigator on the DARPA grant. “Even minor fluctuations due to thermal disturbances at room temperature could lead to spin directions flipping and information being lost.”

Read the full story